Posts tagged ‘Science’

April 28, 2012

Dr. Stefan Bouzarovski from the University of Birmingham, UK: Energy poverty is on the rise across Europe

by Jasmina Nikoloska

It’s nothing new when we say that energy resources have shaped world geopolitics even more than political tensions and physical conflicts. Since we will eventually be forced to move towards a sustainable energy future, those boundaries will eventually change and adapt to the new energy systems and n… more Dr. Stefan Bouzarovski from the University of Birmingham, UK: Energy.

Advertisements
July 5, 2011

Is Thorium the right choice for our energy future?

by Jasmina Nikoloska

The question on what our energy future should be based on  is complex.

Currently one of  the biggest environmental concern  is global warming and therefore investing in renewables and sustainable energy sources is reasonable, but could we meet our energy needs without nuclear?

German MPs recently voted 513-79 in favour of renewables, approving plans to shut down the country’s nuclear plants by 2022.

After Fukushima disaster Germany shut down instantly eight of the older reactors but remaining nine reactors will be shut down in stages by the end of 2022.

Their ambition is to double the share of energy stemming from water, wind, sun or biogas to at least 35%.

Some argue that that  if we back up from  nuclear, it would be in favour of the coal, which will directly affect with more CO2 emissions and  more global warming.

According to the latest figures published by the Department of Energy and Climate Change (DECC), a growth trend of renewables is not strong as it would need to be but unfortunately the use of coal increased for 7%.

With eight new nuclear sites revealed, Managing Radioactive Waste Safely Programme updated and consultation document on  the way on  how potential sites for geological nuclear disposal will be identified and  assessed, it is more than obvious that Britain  is pushing ahead  its nuclear plans.

The Chinese National Academy’s ultimate target is to develop a wholly new nuclear system that will be the future of advanced nuclear fission energy – a nuclear energy, thorium-based molten salt reactor system – Future nuclear technology with thorium?

Thorium - 350

Thorium - 350

India is presently further ahead than any other country in the development of the thorium fuel cycle, but even so the R&D has only progressed on  a relatively small scale.

As with India, Norway’s interest in thorium is because of the indigenous reserves and it is therefore clear why the level of investment and  recent interest has been shown.

For a country such as the UK, with neither thorium or uranium reserves, the incentive for thorium is much reduced, as in both cases it would remain dependent on overseas suppliers.

The thorium fuel cycle presents an alternative option  to the usual uranium plutonium fuel cycle that has long been advocated and researched, but which has yet to be adopted on a commercial scale.

The thorium fuel cycle is claimed to be advantageous in several respects, one of which is that it generates very low quantities of transuranic materials, including plutonium.

Although it is thought  that radioactivity reduction could be significant, still more realistic studies which take account of the effect of U-235 or Pu-239 seed fuels required to breed  the U-233 suggest the benefits are more modest.

Based on National Nuclear Laboratory’s (NNL) knowledge and experience of introducing new fuels into modern reactors, it is estimated that this is likely to take 10 to 15 years even with a concerted R&D effort and investment before the thorium fuel cycle could be established in current reactors and much longer for any future reactor systems.

While the thorium fuel cycle is theoretically capable of being self-sustainable, this is only achievable with full recycle.

According to the NNL economic benefits are theoretically achievable by using thorium fuels, in current market conditions the position is marginal and insufficient to justify major investment.

The conclusion of the NNL’s paper is that the thorium fuel cycle does not currently have a role to play in the UK context, other than  its potential application for plutonium  management in the medium to long term.

With the world’s population due to hit nine billion by 2050, it is unlikely that the pressure to reduce energy consumption is possible therefore we have to highlight every potential energy source.

On the other hand I can see a good point in the Jean McSorley’s, statement, senior consultant for Greenpeace’s nuclear campaign.

“Even if thorium technology does progress to the point where it might be commercially viable, it will face the same problems as conventional nuclear: it is not renewable or sustainable and cannot effectively connect to smart grids. The technology is not tried and tested, and none of the main players is interested. Thorium reactors are no more than a distraction”.

 

You can see the report here: 2010 National Nuclear Laboratory (NNL) report (PDF)

April 8, 2011

Tevatron indicates a new particle challenging the fundamental force of nature

by Jasmina Nikoloska

The researchers at the Fermilab’s Tevatron formally announced a discovery that, according to physicists, could transform all of high energy physics.

The team noticed a pick in their data, an excess of a certain pattern that was not expected, which could be evidence of a new particle. The unknown particle could signal a new fundamental force of nature and the most radical change in the world of physics in our time.

The peak is an excess of particle collision events that produce a W boson accompanied by two hadronic jets. It was in these jets that the unexpected “bump” in the team’s data occurred, showing a particle that the current understanding the Standard Model does not include.

According to the scientists this means that there is less than a 1 in 1375 chance that the effect is mimicked by a statistical variation.

The present analysis is based on 4.3 inverse femtobarns of data. The CDF collaboration will repeat the analysis with at least twice as much data to see whether the bump gets more or less pronounced. Other experiments, including DZero and the LHC experiments, will look for a particle of about 140 GeV/c2 in their data as well. Their results will either refute or confirm our result, scientists say.

Beside the explanation of a new particle, unknown to the standard theory of the fundamental laws of physics, alternative explanation would be that we need to reconsider the theory that is used to predict the background spectrum, which is based on standard particle physics processes.

The number of on-going tests should confirm whether the particle is real or not.

You can read the paper and watch the lecture online.

 

Related articles: Accelerator hints at new particle


March 10, 2011

Alternative fuel from everyday life could power cars

by Jasmina Nikoloska

Humans face an unprecedented challenge to maintain their standard of living while reducing the environmental impact of fossil fuels. The rapid introduction of new technologies and if possible changing our consumption habits is essential.

Last March I was writing that a sports carmaker Lotus together with Intelligent Energy is developing new technology to make famous black taxi cars in London greener. The idea is to use hydrogen-powered fuel cells in order to reduce CO2 emissions from transport and hopefully, London’s famous black cabs to use hydrogen fuel cells by 2012

Then is August, Scottish scientists recognised the available potential in the £4 billion local whisky industry, in that by using two main by-products of the whisky distillation process – pot ale, or the liquid from the copper stills, and draff, or the spent grains – it could be possible to develop the next generation of biofuel, Biofuel from Scotch whisky could power cars

Recently I discovered that possibly the main difficulty, in using hydrogen power in cars, storing the fuel, have been overcome.

Hydrogen atoms are so small that they can slip between the spaces in molecules of other materials, and the gas escapes it can be a threat.

Therefore, Cella Energy Ltd developed safe, low-cost hydrogen storage materials. The innovation is based on materials using nano-structuring to safely encapsulate hydrogen at ambient temperatures and pressures which sidesteps the requirement for an expensive hydrogen infrastructure.

According to Cella Energy Ltd web site hydrogen fuels for vehicles you can pump like regular gasoline at room temperature and pressure, safer to use than gasoline or diesel but with zero carbon emissions.                                                                                                                                                      

Also, the microbeads could be used in a regular vehicle, with standard combustion engines, with minimal modifications as a fuel additive that could allow vehicle to meet the Euro 6 emission standards, by helping it to burn petrol more cleanly and reducing greenhouse gas emissions.

What’s more, Conservation Magazine published yesterday, that scientists develop technology to turn urine into hydrogen fuel. Generating hydrogen fuel from urine is a promising idea.

Gerardine Botte, a professor of chemical and biomolecular engineering at Ohio University, recognising that urine contains two compounds that could be a source of hydrogen: ammonia and urea.

He showed that if an electrode is placed in wastewater and apply a gentle current, and voila: hydrogen gas that can be used to power a fuel cell.

In fact, ammonia and urea hold their hydrogen atoms less tightly than water does, so less energy is required to split them off.

Professor Botte’s technology has also the potential to be used in locations where a lot of people come across, for example an office building with 200 to 300 workers could generate 2 kilowatts of power.

Although, that’s not enough to power the building, it is a step forward in finding way to use human wastewater as an effective alternative to fossil fuels.

Illustration: Corbis Images

February 24, 2011

Brazilian scientists see new source of renewable energy in atmospheric humidity

by Jasmina Nikoloska

Believing that electricity could be generated from the air, Brazilian scientists are working to discover the processes involved in the formation and release of electricity from water in the atmosphere.

Contrary to the previous belief that water droplets in the atmosphere were electrically neutral and remained so even after coming into contact with the electrical charges on dust particles and droplets of other liquids, the latest evidence has shown that water in the atmosphere really does pick up an electrical charge, Wired UK reported on 27 August 2010.

The research was presented at a meeting of the American Chemical Society in Boston by study leader Fernando Galembeck, PhD, from the University of Campinas (Brazil), who confirmed that laboratory experiments had proven “hygroelectricity”, or humidity, which meant that “water in the atmosphere can accumulate electrical charges and transfer them to other materials it comes into contact with”.

It might sound hard to believe, but a team of scientists from the university is working to develop suitable devices to capture electricity from the air, and then eventually to use it to power houses and businesses.

Although the research is still in its early stages, Galembeck presented…

See more: Brazilian scientists see new source of renewable energy in atmospheric.

February 18, 2011

Generating energy from nuclear fusion – Is it possible?

by Jasmina Nikoloska
Nuclear fusion is the natural process of converting hydrogen into helium at temperatures of 10-15 million Kelvin, providing enough energy to power the Sun and stars.

This almost endless process has inspired a vigorous world-wide research programme, aimed at harnessing fusion energy for human needs.

Seemingly a perfect energy source to supply the world’s energy needs for millions of years to come, nuclear fusion in and of itself generates no carbon dioxide emissions or harmful waste, and poses no threat to a surrounding human population.

But to exploit this energy from nuclear fusion on Earth is different and more difficult; much more efficient fusion reactions than those at work on the Sun would have to be selected, in this case, those between the two heavy forms of hydrogen: deuterium (D) and tritium (T).

Despite the progress achieved in fusion experiments, no device has yet made more energy than it consumes: Fusion has only been achieved by putting far more energy into a system than the fusion itself produces.

Fusion on Earth occurs under specific conditions at very high temperatures, greater than 100 million Kelvin, from a very hot gas or plasma of hydrogen in a controlled environment using a powerful magnetic field.

In order to harness fusion energy, scientists and engineers are learning how to control very high temperature plasmas.

The International Thermonuclear Experimental Research Reactor (ITER), in southern France, is a multinational research and engineering project designed to prove the scientific and technological feasibility of a full-scale fusion power reactor. It is an experimental step between today’s studies of plasma physics and future electricity-producing fusion power plants.

It is designed to produce approximately 500 MW of fusion power sustained for more than 400 seconds. ITER will be the first fusion experiment with an output power higher than the input power.

The ITER project faces funding problems; a shortfall of building costs in 2012-2013 of 1.4 billion euro is expected to be covered by European Union research funds. This raises concerns among scientists working on other research programmes, who argue that the proposal could “rob researchers of vital funds”.

The original plan was to build the bones of the experiment in 10 years for a budget of 5 billion euro. Many now expect it to be in the region of 15 billion euro, Time’s Ecocentric published recently.

The Joint European Torus (JET), at Culham Science Centre, Oxfordshire, UK, investigates the potential of fusion power as a safe, clean and virtually limitless energy source for future generations. The largest tokamak in the world, it is the only operational fusion experiment capable of producing fusion energy.

While JET represents a pure scientific experiment, the reactor-scale experiment ITER is designed to deliver 10 times the power it consumes. The next foreseen device, DEMO, is expected to be the first fusion plant to reliably provide electricity to the grid.

If successful, this will offer a viable alternative energy supply within the next 30 to 40 years.

Written by: Jasmina Nikoloska for Energetika.NET
February 17, 2011

Scientists linked increased flooding with climate change

by Jasmina Nikoloska

This week’s journal Nature published the results of two studies that find link between greenhouse emissions and the observed increase in extreme rains in the Northern Hemisphere as well the increased risk of flooding in the United Kingdom.

In the autumn 2000 were the highest rains in England and Wales since records began in 1766 and now the scientists say they are almost certainly caused by climate change.

UK’s wettest period affecting more than 10.000 homes and more than a billion pounds damage, so this paper shows that we already have climate change and it is not something that will happen in the future.

The results are based on a ran computer models of the atmosphere as it actually was, and parallel models of the atmosphere as it would have been without the carbon dioxide and other greenhouse gases that had accrued from human activities..

A research team led from Oxford University came to a conclusion that the emissions substantially increased the odds of a flood occurring in 2000, with about a doubling of the likelihood.

If the risk of floods is increasing, policymakers will have to be ready to respond but unfortunately in the UK, the government has already made its mind by having cut the flood defence budget by 8% earlier this month.

However, there will be always someone how doesn’t agree with how the results are carried out.

Bjorn Lomborg, the Danish “sceptical environmentalist” told BBC News that society had to look at where and how people lived.

“But is the right way to handle future flooding by focusing on climate change? The answer is no – that’s an incredibly expensive way of making extreme flooding very slightly less likely in 100 years.

“We should focus on the simple ways – making better protection, making sure people don’t settle on flood plains, and that we have some places where rivers can naturally flood as they did in the past.” – published yesterday on BBC News web site.

Written by Jasmina Nikoloska